Introduction
The four-part series Controlling the Printer from Word VBA by MVP Jonathan West is the most comprehensive treatment of this topic I have seen. It was originally published in 2002-2003 on the TechTrax web site run by MVP Dian Chapman. That site is no longer available, but its content is stored at the Internet Archive Wayback Machine (https://web.archive.org/), from which I created this document.
Jay Freedman
Microsoft Word MVP
Controlling the Printer from Word VBA
by Jonathan West, MVP
Part 1: Using VBA to Select the Paper Tray
This is the first part of what will, hopefully, be a multi-part article on controlling the printer properties from Word VBA.
Introduction
There's a very strange thing about Word—in all its versions, since it was introduced on Windows. Word is a word-processor, designed for output to the printed page. The versions for Windows have always had a scripting language (WordBasic up to Word 95, VBA since Word 97). However, the scripting language has never been able to control the properties of the printer, such as whether to print in color or monochrome; or whether or not to print on both sides of the paper; or provide information about the printer, such as what paper trays it has; or what sizes of paper it can take.
For some time, Visual Basic has had the Printers collection and the Printer object, which allowed this kind of control over the printer for applications written in Visual Basic. In Office XP, Access 2002 has acquired the same objects, but still nothing in Word.
It is quite possible that they will get around to it for the next version of Office. That's all very well, but it doesn't help us right now!
Current Capabilities of Word VBA
In Word VBA, dealing with paper trays is a horrible mess. The Word object model offers the DefaultTrayID, FirstPageTray and OtherPagesTray properties. The first one is a property of the Options object, and defines the default tray used when printing from Word. The other two are properties of the PageSetup object, and are document-specific.
The VBA Help for Word lists a number of constants which it suggests should be used with the DefaultTrayID, FirstPageTray and OtherPagesTray properties. These are as follows.
	Value Word
	Constant Name

	0
	 wdPrinterDefaultBin

	1
	 wdPrinterOnlyBin

	1
	 wdPrinterUpperBin

	2
	 wdPrinterLowerBin

	3
	 wdPrinterMiddleBin

	4
	 wdPrinterManualFeed

	5
	 wdPrinterEnvelopeFeed

	6
	 wdPrinterManualEnvelopeFeed

	7
	 wdPrinterAutomaticSheetFeed

	8
	 wdPrinterTractorFeed

	9
	 wdPrinterSmallFormatBin

	10
	 wdPrinterLargeFormatBin

	11
	 wdPrinterLargeCapacityBin

	14
	 wdPrinterPaperCassette

	15
	 wdPrinterFormSource

Unfortunately, no two printers use quite the same names and numbers for their paper trays, and most of them do not use the numbers defined by the Word constants. Take for instance these two printers, and the paper tray names and numbers they use.
HP LaserJet 4Si/Si MX PS	Tektronix Phaser 850P
	ID
	Name

	15
	 Automatically Select

	256
	 Upper Tray

	257
	 Lower Tray

	258
	 Envelope Feeder

	4
	 Manual Feed

	ID
	Name

	15
	 Automatically Select

	257
	 Paper

	258
	 Transparency

	259
	 Upper Tray

	260
	 Middle Tray

	261
	 Lower Tray

	262
	 Manual Feed Paper

	263
	 Manual Feed Transparenc

(No, that last item on the Tektronix list isn't a typo, that's what the printer driver actually returns!)
If you use the Word constants when trying to set the paper trays for these printers, in most cases absolutely nothing will happen—the tray won't change. The printer will simply ignore a request to change to a tray number that is not available.
Getting the Available Paper Bin Names and Numbers
So, we need a way of finding out what paper trays are actually available for the printer you want to use, and what their numbers are. Word VBA doesn't give you direct access to this information, but the Windows API does allow you to obtain this information from the printer driver. With careful programming, the Windows API is accessible from VBA.
The following code provides a means of getting the list of the paper bin names and numbers for the current printer. Paste it into a fresh module. Each function returns a Variant containing an array. GetBinNumbers lists the numbers, and GetBinNames lists the equivalent names for the paper bins. The code is commented so you can see what is happening at each step. If you are not familiar with VB programming of the Windows API, then it will not be at all obvious how it all works even with the comments, but I promise you, it does work!
Warning! This code makes use of a Windows API function to gain access to the printer information. Unless you are confident that you know what you are doing, messing about with the Windows API from VB or VBA is dangerous. Making a mistake in ordinary VBA will just crash your macro. Making a mistake with an API call will often bring down the whole of Word, and in a bad case even the whole of Windows, requiring a reboot. If you want to modify this code in any way, make sure you save everything first. Don't say I didn't warn you!
Option Explicit

Private Const DC_BINS = 6
Private Const DC_BINNAMES = 12
	
Private Declare Function DeviceCapabilities Lib "winspool.drv" _
	Alias "DeviceCapabilitiesA" (ByVal lpDeviceName As String, _
	ByVal lpPort As String, ByVal iIndex As Long, lpOutput As Any, _
	ByVal dev As Long) As Long

Public Function GetBinNumbers() As Variant
	'Code adapted from Microsoft KB article Q194789
	'HOWTO: Determine Available PaperBins with DeviceCapabilities API
	Dim iBins As Long
	Dim iBinArray() As Integer
	Dim sPort As String
	Dim sCurrentPrinter As String
	'Get the printer & port name of the current printer
	sPort = Trim$(Mid$(ActivePrinter, InStrRev(ActivePrinter, " ") + 1))
	sCurrentPrinter = Trim$(Left$(ActivePrinter, _
		InStr(ActivePrinter, " on ")))
	'Find out how many printer bins there are
	iBins = DeviceCapabilities(sCurrentPrinter, sPort, _
		DC_BINS, ByVal vbNullString, 0)
	'Set the array of bin numbers to the right size
	ReDim iBinArray(0 To iBins - 1)
	'Load the array with the bin numbers
	iBins = DeviceCapabilities(sCurrentPrinter, sPort, _
	DC_BINS, iBinArray(0), 0)
	'Return the array to the calling routine
	GetBinNumbers = iBinArray
End Function

Public Function GetBinNames() As Variant
	'Code adapted from Microsoft KB article Q194789
	'HOWTO: Determine Available PaperBins with DeviceCapabilities API
	Dim iBins As Long
	Dim ct As Long
	Dim sNamesList As String
	Dim sNextString As String
	Dim sPort As String
	Dim sCurrentPrinter As String
	Dim vBins As Variant
	'Get the printer & port name of the current printer
	sPort = Trim$(Mid$(ActivePrinter, InStrRev(ActivePrinter, " ") + 1))
	sCurrentPrinter = Trim$(Left$(ActivePrinter, _
		InStr(ActivePrinter, " on ")))
	'Find out how many printer bins there are
	iBins = DeviceCapabilities(sCurrentPrinter, sPort, _
		DC_BINS, ByVal vbNullString, 0)
	'Set the string to the right size to hold all the bin names
	'24 chars per name
	sNamesList = String(24 * iBins, 0)
	'Load the string with the bin names
	iBins = DeviceCapabilities(sCurrentPrinter, sPort, _
		DC_BINNAMES, ByVal sNamesList, 0)
	'Set the array of bin names to the right size
	ReDim vBins(0 To iBins - 1)
	For ct = 0 To iBins - 1
		'Get each bin name in turn and assign to the next item in the array
		sNextString = Mid(sNamesList, 24 * ct + 1, 24)
		vBins(ct) = Left(sNextString, InStr(1, sNextString, Chr(0)) - 1)
	Next ct
	'Return the array to the calling routine
	GetBinNames = vBins
End Function

Using the Code
Fortunately, you don't need to know all the details of how that code works in order to be able to use it! It has been designed so that minimal additional code is needed when you want to manipulate the paper bins.
If you want to give the user of a VBA macro the choice of which paper bin to use, then it is necessary to display the list of bins. This is quite straightforward. Create a UserForm, and include a ListBox on it (call it ListBox1). To put the list of bin names into the ListBox, just use the following code in the UserForm_Initialize event, so that the ListBox is filled with the list of paper trays when the UserForm is first displayed.
	ListBox1.List = GetBinNames
Later, if the user has selected a bin, and you now want to assign the selection to the current document, the following code could be used.
Dim vBinNumbers as Variant
If ListBox1.ListIndex >= 0 Then
	vBinNumbers = GetBinNumbers
	ActiveDocument.PageSetup.OtherPagesTray = _
		vBinNumbers(ListBox1.ListIndex)
Else
	MsgBox "No paper tray has been selected."
End If
That's all there is to it!

2	Controlling the Printer from Word VBA
Part 4: Getting printer driver details	1

Part 2: Using VBA to control Duplex, Color Mode and Print Quality
In last month's article, the Windows API was used to get information, from the printer, about the paper trays available in the printer. However, everything that was done in that article to control the printer was done through normal Word properties. However, there are no properties in Word to control the duplex, color mode or print quality, so we are going to have to control the printer for that, using more Windows API calls.
The main code routine that implements these calls is listed at the end of the article.
Printing in Color or Monochrome
If you have a color inkjet printer, it may often happen that you want to save money by printing in monochrome most of the time, and economize on expensive color ink. If you are printing a draft to check layout, you normally don't need color even if the document contains it. So, it would be nice to have a quick way of checking whether the color mode is set to color or monochrome. The main code routine at the end of this article has a GetColorMode function and a SetColorMode subroutine.
The color mode can take two possible values, as shown in the following table:
	Value
	Meaning

	1
	Monochrome

	2
	Color

The following code is an example of how to use the routines:
Sub AskBeforePrintingInColor()
 Dim iColor As Long
 iColor = GetColorMode
 If iColor = 2 Then
 If MsgBox("Do you really want to print in color?", _
 vbYesNo) = vbNo Then
 SetColorMode 1
 End If
 End If
 ActiveDocument.PrintOut Background:=False
 SetColorMode iColor
End Sub
This routine checks the color mode. If the color mode is currently color, it asks if you really want to print in color and changes to monochrome before printing if you answer no. The code restores the original color mode after printing.
Important Note! For all the printer properties set by the routines described in this article, if you change a setting, it is changed as the default printer setting for all applications (not just Word) until you set it back.
Printing Duplex
Duplex printing works in a very similar fashion to setting the color property, except that there are three possible values, as show in the table below:
	Value
	Meaning

	1
	Single-sided printing

	2
	Duplex printing using a horizontal binding

	3
	Duplex printing using a vertical binding

The vertical binding is the more commonly used duplex setting. With this setting, if you turn the page to the left, the text is the same way up on the other side of the page. In other words, if you bind the pages after printing, you would have a vertical binding on the left-hand side. You would use this setting for booklet printing.
Horizontal binding is for use when you want the binding horizontally on the top edge of the page. This is sometimes called tablet style.
The following diagram illustrates the two kinds of duplex printing.
[image: Diagram image showing both horizontal and vertical binding. Horizontal shows page 1 at the top and page 2 bound below, with the binding going horizontally between the two pages. Vertical binding shows page 1 to the left, page 2 to the right, with the binding vertically between the two pages.]
The following code will set the printer to duplex and print a document. This can be particularly useful in Word 2002 for a document set up as a booklet using the Bookfold option in File/Page Setup. The pages can then be stapled in the middle and folded to make the booklet.
Sub PrintDuplexBooklet()
 Dim iDuplex As Long
 iDuplex = GetDuplex 'save the current setting
 SetDuplex 3 'set for vertical binding
 ActiveDocument.PrintOut Background:=False
 SetDuplex iDuplex 'restore the original setting
End Sub
Setting the Print Quality
The possible values for the Print quality are show in the table below.
	Value
	Meaning

	-1
	Draft resolution

	-2
	Low resolution

	-3
	Medium resolution

	-4
	High resolution

	Any positive value
	The printer resolution in dots per inch (dpi)

The meaning of draft, low, medium and high resolution varies from printer to printer. In some cases it is simply an indication of varying resolution. In others, such as inkjet printers, lower-quality printing indicates that less ink is being used to print the page.
Some printers will return a negative value for the property, others will return a positive number giving the resolution, as measured in dots per inch.
In some cases the printer will accept being set with either positive or negative values of the property, others will ignore any requests they don't understand. The only way to know is to test with the specific printer you want to control.
The following code will print any document of more than 10 pages in draft mode
 Public Sub PrintLongDocsDraft()
 Dim iQuality As Long
 ActiveDocument.Repaginate
 If ActiveDocument.Range.Information(wdNumberOfPagesInDocument) > 10 Then
 iQuality = GetPrintQuality 'save the current setting
 SetPrintQuality -1
 ActiveDocument.PrintOut Background:=False
 SetPrintQuality iQuality 'restore the original setting
 End If
End Sub
Main Code for the Article
The following code should be pasted into a separate module. It contains the GetColorMode, SetColorMode, GetDuplex, SetDuplex, GetPrintQuality and SetPrintQuality routines that are used in the code samples above.
Important Note! Same warning as last month. Unless you are confident you know what you are doing, don't alter this code, just use it. Bugs in Windows API code don't just stop a macro, they can bring down Word or even Windows. If you're really keen to know how the code does what it does, I've put in plenty of comments so you can look through it.
Option Explicit
Private Type PRINTER_DEFAULTS
 pDatatype As Long
 pDevmode As Long
 DesiredAccess As Long
End Type

Private Type PRINTER_INFO_2
 pServerName As Long
 pPrinterName As Long
 pShareName As Long
 pPortName As Long
 pDriverName As Long
 pComment As Long
 pLocation As Long
 pDevmode As Long ' Pointer to DEVMODE
 pSepFile As Long
 pPrintProcessor As Long
 pDatatype As Long
 pParameters As Long
 pSecurityDescriptor As Long ' Pointer to SECURITY_DESCRIPTOR
 Attributes As Long
 Priority As Long
 DefaultPriority As Long
 StartTime As Long
 UntilTime As Long
 Status As Long
 cJobs As Long
 AveragePPM As Long
End Type

Private Type DEVMODE
 dmDeviceName As String * 32
 dmSpecVersion As Integer
 dmDriverVersion As Integer
 dmSize As Integer
 dmDriverExtra As Integer
 dmFields As Long
 dmOrientation As Integer
 dmPaperSize As Integer
 dmPaperLength As Integer
 dmPaperWidth As Integer
 dmScale As Integer
 dmCopies As Integer
 dmDefaultSource As Integer
 dmPrintQuality As Integer
 dmColor As Integer
 dmDuplex As Integer
 dmYResolution As Integer
 dmTTOption As Integer
 dmCollate As Integer
 dmFormName As String * 32
 dmUnusedPadding As Integer
 dmBitsPerPel As Integer
 dmPelsWidth As Long
 dmPelsHeight As Long
 dmDisplayFlags As Long
 dmDisplayFrequency As Long
 dmICMMethod As Long
 dmICMIntent As Long
 dmMediaType As Long
 dmDitherType As Long
 dmReserved1 As Long
 dmReserved2 As Long
End Type

Private Const DM_ORIENTATION = &H1
Private Const DM_PAPERSIZE = &H2
Private Const DM_PAPERLENGTH = &H4
Private Const DM_PAPERWIDTH = &H8
Private Const DM_DEFAULTSOURCE = &H200
Private Const DM_PRINTQUALITY = &H400
Private Const DM_COLOR = &H800
Private Const DM_DUPLEX = &H1000
Private Const DM_IN_BUFFER = 8
Private Const DM_OUT_BUFFER = 2
Private Const PRINTER_ACCESS_USE = &H8
Private Const STANDARD_RIGHTS_REQUIRED = &HF0000
Private Const PRINTER_NORMAL_ACCESS = (STANDARD_RIGHTS_REQUIRED Or _
 PRINTER_ACCESS_USE)
Private Const PRINTER_ENUM_CONNECTIONS = &H4
Private Const PRINTER_ENUM_LOCAL = &H2

Private Declare Function ClosePrinter Lib "winspool.drv" _
 (ByVal hPrinter As Long) As Long
Private Declare Function DocumentProperties Lib "winspool.drv" _
 Alias "DocumentPropertiesA" (ByVal hwnd As Long, _
 ByVal hPrinter As Long, ByVal pDeviceName As String, _
 ByVal pDevModeOutput As Long, ByVal pDevModeInput As Long, _
 ByVal fMode As Long) As Long
Private Declare Function GetPrinter Lib "winspool.drv" Alias _
 "GetPrinterA" (ByVal hPrinter As Long, ByVal Level As Long, _
 pPrinter As Byte, ByVal cbBuf As Long, pcbNeeded As Long) As Long
Private Declare Function OpenPrinter Lib "winspool.drv" Alias _
 "OpenPrinterA" (ByVal pPrinterName As String, phPrinter As Long, _
 pDefault As PRINTER_DEFAULTS) As Long
Private Declare Function SetPrinter Lib "winspool.drv" Alias _
 "SetPrinterA" (ByVal hPrinter As Long, ByVal Level As Long, _
 pPrinter As Byte, ByVal Command As Long) As Long
Private Declare Function EnumPrinters Lib "winspool.drv" _
 Alias "EnumPrintersA" _
 (ByVal flags As Long, ByVal name As String, ByVal Level As Long, _
 pPrinterEnum As Long, ByVal cdBuf As Long, pcbNeeded As Long, _
 pcReturned As Long) As Long
Private Declare Function PtrToStr Lib "kernel32" Alias "lstrcpyA" _
 (ByVal RetVal As String, ByVal Ptr As Long) As Long
Private Declare Function StrLen Lib "kernel32" Alias "lstrlenA" _
 (ByVal Ptr As Long) As Long
Private Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" _
 (pDest As Any, pSource As Any, ByVal cbLength As Long)
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)
Private Declare Function DeviceCapabilities Lib "winspool.drv" _
 Alias "DeviceCapabilitiesA" (ByVal lpDeviceName As String, _
 ByVal lpPort As String, ByVal iIndex As Long, lpOutput As Any, _
 ByVal dev As Long) As Long

Public Sub SetColorMode(iColorMode As Long)
 SetPrinterProperty DM_COLOR, iColorMode
End Sub

Public Function GetColorMode() As Long
 GetColorMode = GetPrinterProperty(DM_COLOR)
End Function

Public Sub SetDuplex(iDuplex As Long)
 SetPrinterProperty DM_DUPLEX, iDuplex
End Sub

Public Function GetDuplex() As Long
 GetDuplex = GetPrinterProperty(DM_DUPLEX)
End Function

Public Sub SetPrintQuality(iQuality As Long)
 SetPrinterProperty DM_PRINTQUALITY, iQuality
End Sub

Public Function GetPrintQuality() As Long
 GetPrintQuality = GetPrinterProperty(DM_PRINTQUALITY)
End Function

Private Function SetPrinterProperty(ByVal iPropertyType As Long, _
 ByVal iPropertyValue As Long) As Boolean
 'Code adapted from Microsoft KB article Q230743
 Dim hPrinter As Long 'handle for the current printer
 Dim pd As PRINTER_DEFAULTS
 Dim pinfo As PRINTER_INFO_2
 Dim dm As DEVMODE
 Dim sPrinterName As String
 Dim yDevModeData() As Byte 'Byte array to hold contents
 'of DEVMODE structure
 Dim yPInfoMemory() As Byte 'Byte array to hold contents
 'of PRINTER_INFO_2 structure
 Dim iBytesNeeded As Long
 Dim iRet As Long
 Dim iJunk As Long
 Dim iCount As Long

 On Error GoTo cleanup
 'Get the name of the current printer
 sPrinterName = Trim$(Left$(ActivePrinter, _
 InStr(ActivePrinter, " on ")))

 pd.DesiredAccess = PRINTER_NORMAL_ACCESS
 iRet = OpenPrinter(sPrinterName, hPrinter, pd)
 If (iRet = 0) Or (hPrinter = 0) Then
 'Can't access current printer. Bail out doing nothing
 Exit Function
 End If

 'Get the size of the DEVMODE structure to be loaded
 iRet = DocumentProperties(0, hPrinter, sPrinterName, 0, 0, 0)
 If (iRet < 0) Then
 'Can't access printer properties.
 GoTo cleanup
 End If

 'Make sure the byte array is large enough
 'Some printer drivers lie about the size of the DEVMODE structure they
 'return, so an extra 100 bytes is provided just in case!
 ReDim yDevModeData(0 To iRet + 100) As Byte

 'Load the byte array
 iRet = DocumentProperties(0, hPrinter, sPrinterName, _
 VarPtr(yDevModeData(0)), 0, DM_OUT_BUFFER)
 If (iRet < 0) Then
 GoTo cleanup
 End If
 'Copy the byte array into a structure so it can be manipulated
 Call CopyMemory(dm, yDevModeData(0), Len(dm))
 If dm.dmFields And iPropertyType = 0 Then
 'Wanted property not available. Bail out.
 GoTo cleanup
 End If

 'Set the property to the appropriate value
 Select Case iPropertyType
 Case DM_ORIENTATION
 dm.dmOrientation = iPropertyValue
 Case DM_PAPERSIZE
 dm.dmPaperSize = iPropertyValue
 Case DM_PAPERLENGTH
 dm.dmPaperLength = iPropertyValue
 Case DM_PAPERWIDTH
 dm.dmPaperWidth = iPropertyValue
 Case DM_DEFAULTSOURCE
 dm.dmDefaultSource = iPropertyValue
 Case DM_PRINTQUALITY
 dm.dmPrintQuality = iPropertyValue
 Case DM_COLOR
 dm.dmColor = iPropertyValue
 Case DM_DUPLEX
 dm.dmDuplex = iPropertyValue
 End Select

 'Load the structure back into the byte array
 Call CopyMemory(yDevModeData(0), dm, Len(dm))

 'Tell the printer about the new property
 iRet = DocumentProperties(0, hPrinter, sPrinterName, _
 VarPtr(yDevModeData(0)), VarPtr(yDevModeData(0)), _
 DM_IN_BUFFER Or DM_OUT_BUFFER)
 If (iRet < 0) Then
 GoTo cleanup
 End If

 'The code above *ought* to be sufficient to set the property
 'correctly. Unfortunately some brands of Postscript printer don't
 'seem to respond correctly. The following code is used to make
 'sure they also respond correctly.
 Call GetPrinter(hPrinter, 2, 0, 0, iBytesNeeded)
 If (iBytesNeeded = 0) Then
 'Couldn't access shared printer settings
 GoTo cleanup
 End If

 'Set byte array large enough for PRINTER_INFO_2 structure
 ReDim yPInfoMemory(0 To iBytesNeeded + 100) As Byte

 'Load the PRINTER_INFO_2 structure into byte array
 iRet = GetPrinter(hPrinter, 2, yPInfoMemory(0), iBytesNeeded, iJunk)
 If (iRet = 0) Then
 'Couldn't access shared printer settings
 GoTo cleanup
 End If

 'Copy byte array into the structured type
 Call CopyMemory(pinfo, yPInfoMemory(0), Len(pinfo))

 'Load the DEVMODE structure with byte array containing
 'the new property value
 pinfo.pDevmode = VarPtr(yDevModeData(0))

 'Set security descriptor to null
 pinfo.pSecurityDescriptor = 0

 'Copy the PRINTER_INFO_2 structure back into byte array
 Call CopyMemory(yPInfoMemory(0), pinfo, Len(pinfo))

 'Send the new details to the printer
 iRet = SetPrinter(hPrinter, 2, yPInfoMemory(0), 0)

 'Indicate whether it all worked or not!
 SetPrinterProperty = CBool(iRet)

cleanup:
 'Release the printer handle
 If (hPrinter <> 0) Then Call ClosePrinter(hPrinter)

 'Flush the message queue. If you don't do this,
 'you can get page fault errors when you try to
 'print a document immediately after setting a printer property.
 For iCount = 1 To 20
 DoEvents
 Next iCount
 End Function
Private Function GetPrinterProperty(ByVal iPropertyType As Long) As Long
 'Code adapted from Microsoft KB article Q230743
 Dim hPrinter As Long
 Dim pd As PRINTER_DEFAULTS
 Dim dm As DEVMODE
 Dim sPrinterName As String
 Dim yDevModeData() As Byte
 Dim iRet As Long

 On Error GoTo cleanup

 'Get the name of the current printer
 sPrinterName = Trim$(Left$(ActivePrinter, _
 InStr(ActivePrinter, " on ")))

 pd.DesiredAccess = PRINTER_NORMAL_ACCESS

 'Get the printer handle
 iRet = OpenPrinter(sPrinterName, hPrinter, pd)
 If (iRet = 0) Or (hPrinter = 0) Then
 'Couldn't access the printer
 Exit Function
 End If

 'Find out how many bytes needed for the printer properties
 iRet = DocumentProperties(0, hPrinter, sPrinterName, 0, 0, 0)
 If (iRet < 0) Then
 'Couldn't access printer properties
 GoTo cleanup
 End If

 'Make sure the byte array is large enough, including the
 '100 bytes extra in case the printer driver is lying.
 ReDim yDevModeData(0 To iRet + 100) As Byte

 'Load the printer properties into the byte array
 iRet = DocumentProperties(0, hPrinter, sPrinterName, _
 VarPtr(yDevModeData(0)), 0, DM_OUT_BUFFER)
 If (iRet < 0) Then
 'Couldn't access printer properties
 GoTo cleanup
 End If

 'Copy the byte array to the DEVMODE structure
 Call CopyMemory(dm, yDevModeData(0), Len(dm))

 If Not dm.dmFields And iPropertyType = 0 Then
 'Requested property not available on this printer.
 GoTo cleanup
 End If

 'Get the value of the requested property
 Select Case iPropertyType
 Case DM_ORIENTATION
 GetPrinterProperty = dm.dmOrientation
 Case DM_PAPERSIZE
 GetPrinterProperty = dm.dmPaperSize
 Case DM_PAPERLENGTH
 GetPrinterProperty = dm.dmPaperLength
 Case DM_PAPERWIDTH
 GetPrinterProperty = dm.dmPaperWidth
 Case DM_DEFAULTSOURCE
 GetPrinterProperty = dm.dmDefaultSource
 Case DM_PRINTQUALITY
 GetPrinterProperty = dm.dmPrintQuality
 Case DM_COLOR
 GetPrinterProperty = dm.dmColor
 Case DM_DUPLEX
 GetPrinterProperty = dm.dmDuplex
 End Select

cleanup:
 'Release the printer handle
 If (hPrinter <> 0) Then Call ClosePrinter(hPrinter)
End Function

Part 3: Dealing with Different Paper Sizes
Tidying Up Loose Ends
Before I get on to dealing with paper sizes, I just want to tidy up an issue that arose in correspondence following last month's article.
Andrew Hosking emailed me saying he had tried out the code to control the duplex setting and found that it just wouldn't work for him. We exchanged a few emails before we discovered the cause. It was a limitation that I knew about, but had neglected to mention in the article.
The code will work perfectly happily with a networked printer, but only if the printer driver is installed on the local machine. If printing is relying on the printer driver on the printer server, then the calls to the Windows API do not work. The workaround is to install a copy of the appropriate printer driver on the local machine—pointing to the network printer.
If you are working in a corporate networked environment, you will probably need the assistance and agreement of the system administrator for this (unless you are the system administrator!)
Paper Sizes
So now to the main business. In Part 1 of this series, I dealt with selecting paper trays, and pointed out that there are significant inconsistencies between the way Word deals with them and the way Windows does. If you thought that was a mess, you ain't seen nothin' yet! The handling of paper trays is a model of logic and consistency compared to how Word deals with paper sizes.
Why Do We Need to Know About Paper Sizes in Code?
If you are in the US and have received a Word document from Europe, the document is probably formatted A4, while your printer is set up for US Letter.
The larger types of laser printer are sometimes too clever for their own good. On receiving a request to print an A4 document when they are set up for Letter, they usually sit there flashing an "I need help" message on their LCD display. In fact, all that is usually needed is to press the "Continue" button on the printer and it will happily get on with the task. Because US Letter is shorter and wider than A4, you might have a large right margin and lose a bit of the page footer text on the printout.
One way to deal with this is to reformat documents so that they match the paper size you actually have in the printer. That is the ideal, but it isn't always practicable. The way in which Word documents are laid out varies a great deal from person to person, and simply changing the paper size in the Page Setup dialog can result in the most incredible mess, especially if manual page breaks have been used to make sure that related information is all grouped on the same page.
An alterative is to fool the printer into thinking that it has A4 paper when it is actually loaded with Letter. Then the print job will go through uninterrupted.
You can do this manually by going to the Printer Properties dialog and changing the paper size there. (Remember to change it back again afterwards!) If you have a program that is printing a large batch of documents, you need to be able to do the same thing in code.
In the Part 1 article on paper trays, there was no need to have Windows API code to get and set the default paper tray in the printer, because Word already has methods in the Options object to do that for you. Unfortunately, the same cannot be said for getting and setting the current paper size. Therefore, we need some routines that will communicate with the printer driver to do this. The code below allows you to get and set the paper width and height. The values returned are in points (1/72") for compatibility with Word's PageSetup object, even though the printer driver itself returns the height and width in units of a tenth of a millimeter. Paste the following code into the end of the same module that you created for the Part 2 article. (A complete listing of all the code for all three parts of the article is available from the TechTrax Library, ready to be imported into your project.)
Public Function GetPaperHeight() As Single
 'Windows API returns page height in 1/10ths of a millimeter.
 'Value converted to points for compatibility
 'with the PageHeight property
 GetPaperHeight = CSng(GetPrinterProperty(DM_PAPERLENGTH)) * 72 / 254
End Function

Public Sub SetPaperHeight(sngHeight As Single)
 Dim lHeight As Long

 'Windows API sets page height in 1/10ths of a millimeter.
 'Value converted from points for compatibility
 'with the PageHeight property
 lHeight = CLng(sngHeight * 254 / 72)
 SetPrinterProperty DM_PAPERLENGTH, lHeight
End Sub

Public Function GetPaperWidth() As Single
 'Windows API returns paper width in 1/10ths of a millimeter.
 'Value converted to points for compatibility
 'with the PageWidth property
 GetPaperWidth = CSng(GetPrinterProperty(DM_PAPERWIDTH)) * 72 / 254
End Function

Public Sub SetPaperWidth(sngWidth As Single)
 Dim lWidth As Long
 'Windows API sets page height in 1/10ths of a millimeter.
 'Value converted from points for compatibility
 'with the PageWidth property
 lWidth = CLng(sngWidth * 254 / 72)
 SetPrinterProperty DM_PAPERWIDTH, lWidth
End Sub

Public Function GetPaperSize() As Long
 GetPaperSize = GetPrinterProperty(DM_PAPERSIZE)
End Function
Public Sub SetPaperSize(iPaperSize As Long)
 SetPrinterProperty DM_PAPERSIZE, iPaperSize
End Sub
The code above makes use of the SetPrinterProperty and GetPrinterProperty routines that I listed in last month's Part 2 article.
Getting a List of Available Paper Sizes
The GetPaperSize and SetPaperSize routines listed above return an ID number which represents a standard paper size. Of course, you need to know what each code means.
It is possible to get a list of available paper size numbers and names using code very similar to the code I described in Part 1 for getting paper trays. The code is in fact so similar, that I am not going to list it here because only a couple of lines would be different in each routine compared to the Part 1 code. Instead, the library file that goes with this article contains a complete set of all the routines for all three parts of the article, with code duplication eliminated by calling common routines.
Taking the same two printers that I mentioned in Part 1, here is a list of the names and ID numbers for the paper sizes that they each support.
	ID
	Name

	1
	Letter

	7
	Executive

	9
	A4

	11
	A5

	126
	# 10 Envelope

	127
	Monarch Envelope

	128
	# 6 3/4 Envelope

	129
	DL Envelope

	130
	C5 Envelope

	131
	Choukei 3 Envelope

	132
	Choukei 4 Envelope

 HP LaserJet 4/4Si MX PS	Tektronix Phaser 850DP
	ID
	Name

	1
	Letter

	2
	Letter Small

	5
	Legal

	6
	Statement

	7
	Executive

	9
	A4

	10
	A4 Small

	11
	A5

	13
	B5 (JIS)

	14
	Folio

	15
	Quarto

	18
	Note

	19
	Envelope # 9

	20
	Envelope # 10

	21
	Envelope # 11

	22
	Envelope # 12

	23
	Envelope # 14

	27
	Envelope DL

	28
	Envelope C5

	31
	Envelope C6

	32
	Envelope C65

	34
	Envelope B5

	35
	Envelope B6

	36
	Envelope

	37
	Envelope Monarch

	38
	6 3/4 Envelope

	40
	German Std Fanfold

	41
	German Legal Fanfold

	43
	Japanese Postcard

	48
	Reserved48

	49
	Reserved49

	54
	Letter Transverse

	55
	A4 Transverse

	59
	Letter Plus

	60
	A4 Plus

	61
	A5 Transverse

	62
	B5 (JIS) Transverse

	64
	A5 Extra

	65
	B5 (ISO) Extra

	69
	Japanese Double Postcard

	70
	A6

	73
	Japanese Envelope Chou # 3

	74
	Japanese Envelope Chou # 4

	78
	A5 Rotated

	81
	Japanese Postcard Rotated

	82
	Double Japan Postcard Rotated

	83
	A6 Rotated

	87
	Japan Envelope Chou # 4 Rotated

	88
	B6 (JIS)

	89
	B6 (JIS) Rotated

	91
	Japan Envelope You # 4

	93
	PRC 16K

	94
	PRC 32K

	95
	PRC 32K(Big)

	96
	PRC Envelope # 1

	97
	PRC Envelope # 2

	98
	PRC Envelope # 3

	99
	PRC Envelope # 4

	100
	PRC Envelope # 5

	101
	PRC Envelope # 6

	102
	PRC Envelope # 7

	103
	PRC Envelope # 8

	107
	PRC 32K Rotated

	108
	PRC 32K(Big) Rotated

	109
	PRC Envelope # 1 Rotated

	110
	PRC Envelope # 2 Rotated

	111
	PRC Envelope # 3 Rotated

	112
	PRC Envelope # 4 Rotated

	119
	Letter 8 1/2 x 11 in

	120
	Legal 8 1/2 x 14 in

	121
	A4 210 x 297 mm

	122
	Executive 7 1/4 x 10 1/2 in

	123
	Env Comm10 4 1/8 x 9 1/2 in

	124
	Env Monarch 3 7/8 x 7 1/2 in

	125
	Env DL 110 x 220 mm

Looking at these codes and similar lists for other printers, there is some good news, some not-quite-so-good news and some really, really bad news.
First the good news. The lower-numbered codes (up to 41) and their associated names are common between all the printers. Therefore, Letter paper uses code 1 and has the name "Letter" for any printer that supports it.
The not-quite-so-good news is that above code 41, there are lots of custom paper sizes, and the codes, names and paper sizes vary between printers. Some printers support custom sizes, and some don't. For those that support custom sizes, there is no way of knowing from the name and number what that size actually is. To find out, it would be necessary to set that size using the SetPaperSize routine, and then find out the actual page height and width using the GetPaperHeight and GetPaperWidth functions.
The really bad news is that the standard code numbers up to 41 don't align with the values of the wdPaperSize constants used to set the PaperSize property of Word's PageSetup object. Arrgghh!
The following table shows how Word's standard constants and the Windows API code values map onto each other.
	Paper Size
	Win API Value
	Word Constant Name
	Constant Value

	Letter
	1
	wdPaperLetter
	2

	Letter Small
	2
	wdPaperLetterSmall
	3

	Tabloid
	3
	wdPaperTabloid
	23

	Ledger
	4
	wdPaperLedger
	19

	Legal
	5
	wdPaperLegal
	4

	Statement
	6
	wdPaperStatement
	22

	Executive
	7
	wdPaperExecutive
	5

	A3
	8
	wdPaperA3
	6

	A4
	9
	wdPaperA4
	7

	A4 Small
	10
	wdPaperA4Small
	8

	A5
	11
	wdPaperA5
	9

	B4
	12
	wdPaperB4
	10

	B5
	13
	wdPaperB5
	11

	Folio
	14
	wdPaperFolio
	18

	Quarto
	15
	wdPaperQuarto
	21

	10 x 14 in
	16
	wdPaper10x14
	0

	11 x 17 in
	17
	wdPaper11x17
	1

	Note
	18
	wdPaperNote
	20

	Envelope # 9
	19
	wdPaperEnvelope9
	24

	Envelope # 10
	20
	wdPaperEnvelope10
	25

	Envelope # 11
	21
	wdPaperEnvelope11
	26

	Envelope # 12
	22
	wdPaperEnvelope12
	27

	Envelope # 14
	23
	wdPaperEnvelope14
	28

	C size sheet
	24
	wdPaperCSheet
	12

	D size sheet
	25
	wdPaperDSheet
	13

	E size sheet
	26
	wdPaperESheet
	14

	Envelope DL
	27
	wdPaperEnvelopeDL
	37

	Envelope C5
	28
	wdPaperEnvelopeC5
	34

	Envelope C3
	29
	wdPaperEnvelopeC3
	32

	Envelope C4
	30
	wdPaperEnvelopeC4
	33

	Envelope C6
	31
	wdPaperEnvelopeC6
	35

	Envelope C65
	32
	wdPaperEnvelopeC65
	36

	Envelope B4
	33
	wdPaperEnvelopeB4
	29

	Envelope B5
	34
	wdPaperEnvelopeB5
	30

	Envelope B6
	35
	wdPaperEnvelopeB6
	31

	Envelope
	36
	wdPaperEnvelopeItaly
	38

	Envelope Monarch
	37
	wdPaperEnvelopeMonarch
	39

	6 3/4 Envelope
	38
	wdPaperEnvelopePersonal
	40

	U.S. Standard Fanfold
	39
	wdPaperFanfoldUS
	17

	German Standard Fanfold
	40
	wdPaperFanfoldStdGerman
	16

	German Legal Fanfold
	41
	wdPaperFanfoldLegalGerman
	15

	User-defined
	256
	wdPaperCustom
	41

Quite frankly, this is a horrid mess, and I cannot imagine why Microsoft chose to implement a set of paper size codes in Word that is different from those already standardised for use in Windows.
Still, we have to make the best of it we can. You can set the paper size for the printer by setting the PaperSize property to one of the supported codes. Generally, it is a good idea to make sure that the PaperSize of the printer is equivalent to the PaperSize property of the PageSetup object. For instance, if the ActiveDocument.PageSetup.PaperSize is wdPaperLetter, the you would have to ensure that you use the SetPaperSize subroutine to set the printer's current paper size to 1, and quietly forget about the fact that the value for wdPaperLetter is actually 2! A routine that will check whether a document is A4 size and set the page size accordingly is given below.
Public Sub CheckA4BeforePrinting()
Dim iCurrentPaperSize As Long
If ActiveDocument.PageSetup.PaperSize = wdPaperA4 Then
 'Save current paper size so it can be restored afterwards
 iCurrentPageSize = GetPaperSize

 'Set printer to A4 (value 9 in Win API codes) and print
 SetPaperSize 9
 ActiveDocument.PrintOut Background:=False

 'Restore the original paper size
 SetPaperSize iCurrentPaperSize
Else
 'No need for special action, just print
 ActiveDocument.PrintOut Background:=False
End If
End Sub

Part 4: Getting printer driver details
More Information Needed?
In the feedback section of this month's issue, Carol Baxter asked "It would be really useful to know how to capture the printer driver into a variable in word. I work for a large firm and all our network printers are called lp(then a number) so the active printer command will not tell me the name of the printer eg HP Laserjet 4. We have macros for printing."
Carol—this article is for you! (I hope that others will find it useful as well.)
Printer Information Available
The code provided with this article will allow you to get the following information about a printer.
ServerName—the name of the printer server it is attached to (if any)
ShareName—if the printer is shared, the share name as broadcast to the network
PortName—the name of the port the printer is connected to
DriverName—the name of the printer driver
Comment—any comments that are listed for the printer in the Printer Properties dialog
Location—the location as given in the Printer Properties dialog
SepFile—the name of the file that defines the separator page for the printer (is an empty string if no separator file is defined)
PrintProcessor—the name of the print processor for the printer
Datatype—the format in which the printer files are spooled.
Parameters—any parameters of the print processor command
Status—the current status of the printer, e.g. "Ready", "Paused" etc.
Jobs—the number of print jobs currently in the queue for the printer.
The DriverName is what Carol is after, but the other information might also be useful!
How to Use the Code
The code listed at the end of the article has a single routine, called GetPrinterDetails. It returns a user-defined type including all of the parameters I have described above. To find out the driver name of the current printer is as simple as this:
MsgBox "Driver name is " & _
 GetPrinterDetails.DriverName
If you want to get several parameters in one go (to reduce the time spent making calls to the routine) and then use them later in your code, you can do something like this:
Dim pInfo as PrinterInfo
pInfo = GetPrinterDetails
MsgBox "Port name is " & pInfo.PortName
MsgBox "Printer status is " & pInfo.Status
Also, if you want to get the printer details for a printer other than the current printer, then you can do so, by including the printer name, like this:
MsgBox "HP DeskJet 540 status " & _
 GetPrinterDetails("HP DeskJet 540").Status
By the way, if you want to get a full list of the printers available on your system, this article by Astrid Zeelenberg tells you how.
Getting Names of Available Printers
http://www.mvps.org/word/FAQs/MacrosVBA/AvailablePrinters.htm
That article includes a routine that returns an array of the available printers. Any one of the items in that array can be used by the GetPrinterDetails routine.
Why Use the Code?
There are a number of possible reasons
· Carol's reason - you need to know the current printer type so that you can decide which printer tray to use for printing.
· You have several printers available, and want to check their status before printing - no point in printing to a printer that is paused or offline.
· You want to distribute print jobs among a number of printers, and want to find out which one is least heavily loaded.
An example of the second reason might work like this...
Suppose you have three printers (called Printer 1, Printer 2 and Printer 3) that you could use for printing the current job, and you want to be sure that you print to a printer that is ready, or will be reasonably soon. The following code could be used.
Dim PrinterList as Variant
Dim i as Long
Dim pInfo as PrinterInfo
PrinterList = Array("Printer 1", "Printer 2", "Printer 3")
For i = LBound(PrinterList) to UBound(PrinterList)
 pInfo = GetPrinterInfo(PrinterList(i))
 Select Case pInfo.Status
 Case "Ready", "Printing", "Processing Job", "Power Save Mode"
 ActivePrinter = PrinterList(i)
 ActiveDocument.PrintOut
 MsgBox "Job printed to " & PrinterList(i)
 Exit For
 Case Else
 End Select
Next i
If i > UBound(PrinterList) Then
 MsgBox "No printers are available at present"
End If
This code does checks each printer in turn, and if the status indicates that the printer is OK, it prints the job there and tells the user where to find the printout. Otherwise, it goes on to the next printer on the list. If no printers are available, it tells the user so.
Setting the ActivePrinter in Excel
I mainly do Word VBA, but I like to keep aware of uses for my code in the other Office applications. In this case, there is a particular use in Excel.
In Word, you can use just the printer name to set the ActivePrinter, even though the name doesn't include the port name. So something like this in Word will successfully change the printer.
ActivePrinter = "HP LaserJet 5Si"
If you try that code in Excel, you will get an error, because Excel must have the port name in the string that defines the printer. (Why this is needed by Excel and not Word is one of the mysteries of life!) This can be a bit of a nuisance if you have used Astrid's article (see above) to get a list of the available printers, as you can't then use it in Excel to set the printer. But with this routine, you can! Suppose the name of the printer you want is loaded into the variable NewPrinter. To change the printer in Excel, the following line of code will work fine.
ActivePrinter = NewPrinter & " on " & _
 	GetPrinterInfo(NewPrinter).PortName
Main Code for the Article
The following code should be pasted into a separate module.
Important Note! Same warning as usual. Unless you are confident you know what you are doing, don't alter this code, just use it. Bugs in Windows API code don't just stop a macro, they can bring down Word or even Windows.
Option Explicit
' Win32 API declares
Private Declare Function OpenPrinter Lib "winspool.drv" _
 Alias "OpenPrinterA" (ByVal pPrinterName As String, _
 phPrn As Long, pDefault As Any) As Long

Private Declare Function ClosePrinter Lib "winspool.drv" _
 (ByVal hPrn As Long) As Long
Private Declare Function GetPrinter Lib "winspool.drv" _
 Alias "GetPrinterA" (ByVal hPrinter As Long, _
 ByVal Level As Long, pPrinter As Any, _
 ByVal cbBuf As Long, pcbNeeded As Long) As Long

Private Declare Function SetPrinter Lib "winspool.drv" _
 Alias "SetPrinterA" (ByVal hPrinter As Long, _
 ByVal Level As Long, pPrinter As Any, _
 ByVal Command As Long) As Long
Private Declare Sub CopyMemory Lib "kernel32" _
 Alias "RtlMoveMemory" (Destination As Any, _
 Source As Any, ByVal Length As Long)

Private Declare Function lstrlenA Lib "kernel32" _
 (ByVal lpString As Long) As Long
Private Declare Function FormatMessage Lib "kernel32" _
 Alias "FormatMessageA" (ByVal dwFlags As Long, _
 lpSource As Any, ByVal dwMessageId As Long, _
 ByVal dwLanguageId As Long, ByVal lpBuffer As String, _
 ByVal nSize As Long, Arguments As Long) As Long

' The data area passed to a system call is too small.
Private Const ERROR_INSUFFICIENT_BUFFER As Long = 122

' Printer status flags used with PRINTER_INFORMATION_2
Private Const PRINTER_STATUS_READY As Long = &H0
Private Const PRINTER_STATUS_PAUSED As Long = &H1
Private Const PRINTER_STATUS_ERROR As Long = &H2
Private Const PRINTER_STATUS_PENDING_DELETION As Long = &H4
Private Const PRINTER_STATUS_PAPER_JAM As Long = &H8
Private Const PRINTER_STATUS_PAPER_OUT As Long = &H10
Private Const PRINTER_STATUS_MANUAL_FEED As Long = &H20
Private Const PRINTER_STATUS_PAPER_PROBLEM As Long = &H40
Private Const PRINTER_STATUS_OFFLINE As Long = &H80
Private Const PRINTER_STATUS_IO_ACTIVE As Long = &H100
Private Const PRINTER_STATUS_BUSY As Long = &H200
Private Const PRINTER_STATUS_PRINTING As Long = &H400
Private Const PRINTER_STATUS_OUTPUT_BIN_FULL As Long = &H800
Private Const PRINTER_STATUS_NOT_AVAILABLE As Long = &H1000
Private Const PRINTER_STATUS_WAITING As Long = &H2000
Private Const PRINTER_STATUS_PROCESSING As Long = &H4000
Private Const PRINTER_STATUS_INITIALIZING As Long = &H8000
Private Const PRINTER_STATUS_WARMING_UP As Long = &H10000
Private Const PRINTER_STATUS_TONER_LOW As Long = &H20000
Private Const PRINTER_STATUS_NO_TONER As Long = &H40000
Private Const PRINTER_STATUS_PAGE_PUNT As Long = &H80000
Private Const PRINTER_STATUS_USER_INTERVENTION As Long = &H100000
Private Const PRINTER_STATUS_OUT_OF_MEMORY As Long = &H200000
Private Const PRINTER_STATUS_DOOR_OPEN As Long = &H400000
Private Const PRINTER_STATUS_SERVER_UNKNOWN As Long = &H800000
Private Const PRINTER_STATUS_POWER_SAVE As Long = &H1000000

' Used to retrieve last API error text.
Private Const FORMAT_MESSAGE_FROM_SYSTEM As Long = &H1000

' VBA-friendly structure used to return the printer info.
Public Type PrinterInfo
 ServerName As String
 ShareName As String
 PortName As String
 DriverName As String
 Comment As String
 Location As String
 SepFile As String
 PrintProcessor As String
 Datatype As String
 Parameters As String
 Status As String
 Jobs As Long
End Type

' Structure used to obtain the data from Windows.
Private Type PRINTER_INFO_2
 pServerName As Long
 pPrinterName As Long
 pShareName As Long
 pPortName As Long
 pDriverName As Long
 pComment As Long
 pLocation As Long
 pDevMode As Long 'DEVMODE
 pSepFile As Long
 pPrintProcessor As Long
 pDatatype As Long
 pParameters As Long
 pSecurityDescriptor As Long 'SECURITY_DESCRIPTOR
 Attributes As Long
 Priority As Long
 DefaultPriority As Long
 StartTime As Long
 UntilTime As Long
 Status As Long
 cJobs As Long
 AveragePPM As Long
 End Type

Public Function GetPrinterDetails(Optional ByVal PrinterName As Variant) As PrinterInfo
 Dim pi2 As PRINTER_INFO_2
 Dim pi2_output As PrinterInfo
 Dim hPrn As Long
 Dim Buffer() As Byte
 Dim BytesNeeded As Long
 Dim BytesUsed As Long
 Dim slash As Long
 Dim DispName As String
 Dim PrinterErrorCode As Long
 Dim StatusCode As Long

 'Use default printer if none specified
 If IsMissing(PrinterName) Then
 PrinterName = ActivePrinter
 PrinterName = Left$(PrinterName, InStr(PrinterName, " on ") - 1)
 End If

 ' Get handle to printer.
 Call OpenPrinter(PrinterName, hPrn, ByVal 0&)
 If hPrn Then
 ' Call once to get proper buffer size.
 Call GetPrinter(hPrn, 2, ByVal 0&, 0, BytesNeeded)
 If Err.LastDllError = ERROR_INSUFFICIENT_BUFFER Then
 ' Size buffer and get printer data.
 ReDim Buffer(0 To BytesNeeded - 1) As Byte
 If GetPrinter(hPrn, 2, Buffer(0), BytesNeeded, BytesUsed) Then
 ' Fill local structure with data/pointers.
 Call CopyMemory(pi2, Buffer(0), Len(pi2))
 ' Transfer string data to output structure.
 pi2_output.ServerName = PointerToStringA(pi2.pServerName)
 pi2_output.ShareName = PointerToStringA(pi2.pShareName)
 pi2_output.PortName = PointerToStringA(pi2.pPortName)
 pi2_output.DriverName = PointerToStringA(pi2.pDriverName)
 pi2_output.Comment = PointerToStringA(pi2.pComment)
 pi2_output.Location = PointerToStringA(pi2.pLocation)
 pi2_output.SepFile = PointerToStringA(pi2.pSepFile)
 pi2_output.PrintProcessor = PointerToStringA(pi2.pPrintProcessor)
 pi2_output.Datatype = PointerToStringA(pi2.pDatatype)
 pi2_output.Parameters = PointerToStringA(pi2.pParameters)
 Call CopyMemory(StatusCode, Buffer(72), 4)
 Call CopyMemory(pi2_output.Jobs, Buffer(76), 4)
 End If
 PrinterErrorCode = 0 'clear error value
 Else
 PrinterErrorCode = Err.LastDllError
 End If
 pi2_output.Status = StatusText(StatusCode, PrinterErrorCode)
 Call ClosePrinter(hPrn)
 End If

 GetPrinterDetails = pi2_output
End Function

Private Function PointerToStringA(ByVal lpStringA As Long) As String
 Dim Buffer() As Byte
 Dim nLen As Long

 If lpStringA Then
 nLen = lstrlenA(ByVal lpStringA)
 If nLen Then
 ReDim Buffer(0 To (nLen - 1)) As Byte
 CopyMemory Buffer(0), ByVal lpStringA, nLen
 PointerToStringA = StrConv(Buffer, vbUnicode)
 End If
 End If
End Function

Private Function StatusText(StatusCode As Long, ErrorCode As Long) As String
 If ErrorCode Then
 StatusText = ApiErrorText(ErrorCode)
 Else
 Select Case StatusCode
 Case PRINTER_STATUS_READY
 StatusText = "Ready"
 Case PRINTER_STATUS_PAUSED
 StatusText = "Paused"
 Case PRINTER_STATUS_ERROR
 StatusText = "Error"
 Case PRINTER_STATUS_PENDING_DELETION
 StatusText = "Deleting..."
 Case PRINTER_STATUS_PAPER_JAM
 StatusText = "Paper Jam"
 Case PRINTER_STATUS_PAPER_OUT
 StatusText = "Paper Out"
 Case PRINTER_STATUS_MANUAL_FEED
 StatusText = "Manual Feed Required"
 Case PRINTER_STATUS_PAPER_PROBLEM
 StatusText = "Paper Problem"
 Case PRINTER_STATUS_OFFLINE
 StatusText = "Offline"
 Case PRINTER_STATUS_IO_ACTIVE
 StatusText = "Downloading Job"
 Case PRINTER_STATUS_BUSY
 StatusText = "Busy"
 Case PRINTER_STATUS_PRINTING
 StatusText = "Printing"
 Case PRINTER_STATUS_OUTPUT_BIN_FULL
 StatusText = "Output Bill Full"
 Case PRINTER_STATUS_NOT_AVAILABLE
 StatusText = "Not Available"
 Case PRINTER_STATUS_WAITING
 StatusText = "Waiting"
 Case PRINTER_STATUS_PROCESSING
 StatusText = "Processing Job"
 Case PRINTER_STATUS_INITIALIZING
 StatusText = "Initializing"
 Case PRINTER_STATUS_WARMING_UP
 StatusText = "Warming Up"
 Case PRINTER_STATUS_TONER_LOW
 StatusText = "Toner Low"
 Case PRINTER_STATUS_NO_TONER
 StatusText = "Toner Out"
 Case PRINTER_STATUS_PAGE_PUNT
 StatusText = "Page too Complex"
 Case PRINTER_STATUS_USER_INTERVENTION
 StatusText = "User Intervention Required"
 Case PRINTER_STATUS_OUT_OF_MEMORY
 StatusText = "Out of Memory"
 Case PRINTER_STATUS_DOOR_OPEN
 StatusText = "Door Open"
 Case PRINTER_STATUS_SERVER_UNKNOWN
 StatusText = "Unable to connect"
 Case PRINTER_STATUS_POWER_SAVE
 StatusText = "Power Save Mode"
 Case Else
 StatusText = Hex$(StatusCode)
 End Select
 End If
End Function

Private Function ApiErrorText(ByVal ErrNum As Long) As String
 Dim msg As String
 Dim nRet As Long
 msg = Space$(1024)
 nRet = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, ByVal 0&, ErrNum, 0&, msg, Len(msg), ByVal 0&)
 If nRet Then
 ApiErrorText = Left$(msg, nRet - 2) ' account for Cr/Lf
 Else
 ApiErrorText = "Error (" & ErrNum & ") not defined."
 End If
End Function
Library Code
I have provided a module which can be imported directly into your Word VBA project which includes all the routines described in all three parts of this article. Click here to download it.
[See file https://jay-freedman.info/printers.zip]
Acknowledgements
I'm a great one for never writing Windows API code myself from scratch if I can avoid it. This month's article is no exception. The code here is adapted (with permission) from a very extensive set of VB class modules for printer information and control, written by Karl E. Peterson, VB/MVP. There's far too much code in his samples to be able to do it justice here, but you can see his original code at his site www.mvps.org/vb/ https://classicvb.net/samples/PrnInfo/ . To see his printer sample code, click the Samples link on the left of the page, and then scroll down to the section PrnInfo.zip.
One thing I like about the samples on Karl's page is that he creates entire modules and class modules. If you have Office 2000 or later, this usually means you can import the code directly into your VBA project without modification, and the code just works. There's no development quite so rapid as being able to use somebody else's already tested and working code!
Note that you can't import forms (.frm modules) in this way because VB Forms are quite different from VBA UserForms.

image1.png
1
1 2
Horizontal
binding
(rablet printing) 2 Vertical binding

(booklet printing)

